首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5055篇
  免费   541篇
  国内免费   260篇
  2024年   4篇
  2023年   101篇
  2022年   102篇
  2021年   179篇
  2020年   211篇
  2019年   285篇
  2018年   282篇
  2017年   176篇
  2016年   197篇
  2015年   235篇
  2014年   390篇
  2013年   440篇
  2012年   296篇
  2011年   305篇
  2010年   261篇
  2009年   268篇
  2008年   282篇
  2007年   311篇
  2006年   208篇
  2005年   203篇
  2004年   124篇
  2003年   121篇
  2002年   91篇
  2001年   78篇
  2000年   79篇
  1999年   58篇
  1998年   60篇
  1997年   40篇
  1996年   34篇
  1995年   46篇
  1994年   30篇
  1993年   38篇
  1992年   26篇
  1991年   22篇
  1990年   17篇
  1989年   24篇
  1988年   25篇
  1987年   25篇
  1986年   26篇
  1985年   31篇
  1984年   29篇
  1983年   26篇
  1982年   23篇
  1981年   6篇
  1980年   6篇
  1979年   5篇
  1978年   6篇
  1977年   6篇
  1974年   5篇
  1972年   6篇
排序方式: 共有5856条查询结果,搜索用时 15 毫秒
1.
2.
The Hoechst dye staining method has been successfully applied to the central nervous system in mammals and its use has been demonstrated in intracerebral transplantation. The technique is rapid, simple and based on intrinsic nuclear properties. It was found to be permanent and valid whatever the animal strains or ages, allowing the distinction of rat cells from those of mouse, studied either separately or in a cross-transplantation model. It permitted the detection of grafted cells in the area of transplantation and the observation of early dispersion around the implantation site. Moreover, it can be combined with immunohistochemistry as demonstrated by a myelin marker in a relevant model. Immunodetection can thus help to directly observe grafted cells, at distance from the locus of transplantation, confirming their presence in the graft-type myelin patches.

Because of its rapid performance, this technique can be used systematically after transplantation to check for the presence of grafted cells in the host.  相似文献   
3.
Hydrogen sulfide (H2S) is a novel gasotransmitter that plays multiple biological roles in various body systems. In addition to its endogenous production, H2S is produced by bacteria colonizing digestive organs, including the oral cavity. H2S was previously shown to enhance pro-apoptotic effects in cancer cell lines, although the mechanisms involved remain unclear. To properly assess the anti-cancer effects of H2S, however, investigations of apoptotic effects in normal cells are also necessary. The aims of this study were (1) to compare the susceptibility to H2S-induced apoptosis between the oral cancer cell line Ca9-22 and oral keratinocytes that were derived from healthy gingiva, and (2) to identify candidate genes involved in the induction of apoptosis by H2S. The susceptibility to H2S-induced apoptosis in Ca9-22 cells was significantly higher than that in keratinocytes. H2S exposure in Ca9-22 cells, but not keratinocytes, enhanced the expression of pleckstrin homology-like domain, family A, member 1 (PHLDA1), which was identified through a differential display method. In addition, PHLDA1 expression increased during actinomycin D-induced apoptosis in Ca9-22 cells. Knockdown of PHLDA1 expression by small interfering RNA in Ca9-22 cells led to expression of active caspase 3, thus indicating apoptosis induction. The tongue cancer cell line SCC-25, which expresses PHLDA1 at a high level, showed similar effects. Our data indicate that H2S is an anti-cancer compound that may contribute to the low incidence of oral cancer. Furthermore, we demonstrated the role of PHLDA1 as an apoptosis suppressor.  相似文献   
4.
5.
The hedgehog signalling pathway is one of the key regulators of metazoan development, and it plays an important role in the regulation of a variety of developmental and physiological processes. But it is aberrantly activated in many human diseases, including osteoarthritis (OA). In this study, we have reviewed the association of hedgehog signalling pathway in the development and progression of OA and evaluated the efforts to target this pathway for the prevention of OA. Usually in OA, activation of hedgehog induces up-regulation of the expression of hypertrophic markers, including type X collagen, increases production of nitric oxide and prostaglandin E2, several matrix-degrading enzymes including matrix metalloproteinase and a disintegrin and metalloproteinase with thrombospondin motifs in human knee joint cartilage leading to cartilage degeneration, and thus contributes in OA. Targeting hedgehog signalling might be a viable strategy to prevent or treat OA. Chemical inhibitors of hedgehog signalling is promising, but they cause severe side effects. Knockdown of HH gene is not an option for OA treatment in humans because it is not possible to delete HH in larger animals. Efficient knockdown of HH achieved by local delivery of small interfering RNA in future studies utilizing large animal OA models might be a more efficient approach for the prevention of OA. However, it remains a major problem to develop one single scaffold due to the different physiological functions of cartilage and subchondral bones possess. More studies are necessary to identify selective inhibitors for efficiently targeting the hedgehog pathway in clinical conditions.  相似文献   
6.
Understanding the patterns of genetic variations within fertility‐related genes and the evolutionary forces that shape such variations is crucial in predicting the fitness landscapes of subsequent generations. This study reports distinct evolutionary features of two differentially expressed mammalian proteins [CaMKIV (Ca2+/calmodulin‐dependent protein kinase IV) and CaS (calspermin)] that are encoded by a single gene, CAMK4. The multifunctional CaMKIV, which is expressed in multiple tissues including testis and ovary, is evolving at a relatively low rate (0.46–0.64 × 10?9 nucleotide substitutions/site/year), whereas the testis‐specific CaS gene, which is predominantly expressed in post‐meiotic cells, evolves at least three to four times faster (1.48–1.98 × 10?9 substitutions/site/year). Concomitantly, maximum‐likelihood‐based selection analyses revealed that the ubiquitously expressed CaMKIV is constrained by intense purifying selection and, therefore, remained functionally highly conserved throughout the mammalian evolution, whereas the testis‐specific CaS gene is under strong positive selection. The substitution rates of different mammalian lineages within both genes are positively correlated with GC content, indicating the possible influence of GC‐biased gene conversion on the estimated substitution rates. The observation of such unusually high GC content of the CaS gene (≈74%), particularly in the lineage that comprises the bovine species, suggests the possible role of GC‐biased gene conversion in the evolution of CaS that mimics positive selection.  相似文献   
7.
8.
Transient receptor potential melastatin 4 (TRPM4) is a broadly expressed Ca2+ activated monovalent cation channel that contributes to the pathophysiology of several diseases.For this study, we generated stable CRISPR/Cas9 TRPM4 knockout (K.O.) cells from the human prostate cancer cell line DU145 and analyzed the cells for changes in cancer hallmark functions. Both TRPM4-K.O. clones demonstrated lower proliferation and viability compared to the parental cells. Migration was also impaired in the TRPM4-K.O. cells. Additionally, analysis of 210 prostate cancer patient tissues demonstrates a positive association between TRPM4 protein expression and local/metastatic progression. Moreover, a decreased adhesion rate was detected in the two K.O. clones compared to DU145 cells.Next, we tested three novel TRPM4 inhibitors with whole-cell patch clamp technique for their potential to block TRPM4 currents. CBA, NBA and LBA partially inhibited TRPM4 currents in DU145 cells. However, none of these inhibitors demonstrated any TRPM4-specific effect in the cellular assays.To evaluate if the observed effect of TRPM4 K.O. on migration, viability, and cell cycle is linked to TRPM4 ion conductivity, we transfected TRPM4-K.O. cells with either TRPM4 wild-type or a dominant-negative mutant, non-permeable to Na+. Our data showed a partial rescue of the viability of cells expressing functional TRPM4, while the pore mutant was not able to rescue this phenotype. For cell cycle distribution, TRPM4 ion conductivity was not essential since TRPM4 wild-type and the pore mutant rescued the phenotype.In conclusion, TRPM4 contributes to viability, migration, cell cycle shift, and adhesion; however, blocking TRPM4 ion conductivity is insufficient to prevent its role in cancer hallmark functions in prostate cancer cells.  相似文献   
9.
Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12–Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12–Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113–131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64–99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.  相似文献   
10.
Mississippi Kites (Ictinia mississippiensis) are trans‐equatorial, long‐distance migrants that breed in North America and overwinter in South America. Information about their migration routes and winter distribution in the Neotropics is mostly anecdotal. By compiling records of Mississippi Kites in South America from the literature and previously unpublished observations (1904–2010), we identified 96 locality records (a location where a flock or individual was recorded) and 146 independent records of flocks (observations of flocks irrespective of year, location, or time of year). Our locality records included 38 (39%) during southbound migration (1 September–30 November), 18 (19%) during northbound migration (15 February–30 April), 38 (39%) during austral summer (1 December–14 February), and two (3%) during austral winter (1 May–31 August). Most Mississippi Kites (84, 88%) were observed between the 11°S and 32°S latitudinal band in central South America. Of our independent records of flocks, 133 (92%) were observed between 11°S and 32°S, 12 (7%) between 11°N and 10°S, and a lone vagrant (1%) between 33°S and 43°S. Our data suggest that Mississippi Kites are common and widespread in the austral summer between 11°S and 32°S in central South America. On the basis of the number of locality records (N = 52, 54%) and number of flocks of Mississippi Kites observed between 22°S and 32°S (N = 61, 42%), the Chaco forest appears to be the main wintering grounds for the species. However, additional monitoring is needed to further test this hypothesis. A large portion of Chaco habitat is now under cultivation, and how this habitat transformation might influence the annual cycle of Mississippi Kites is unknown.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号